Differentiability Math 280

Spring 2011

Differentiability

For $f : \mathbb{R} \to \mathbb{R}$

Idea: f is differentiable at x₀ if zooming in on the graph at (x₀, f(x₀)) gives a line

• Definition: f is differentiable at x_0 if $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ exists

For $f : \mathbb{R}^2 \to \mathbb{R}$

- Idea: f is differentiable at (x_0, y_0) if zooming in on the graph at $(x_0, y_0, f(x_0))$ gives a plane
- Definition: ???

It is not enough to know that $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist.

Example: a nondifferentiable function

$$f(x,y) = \begin{cases} 1 & \text{if } x = 0 \text{ or } y = 0 \\ 0 & \text{otherwise} \end{cases}$$

Note that $f_x(0,0) = 0$ and $f_y(0,0) = 0$ so the partial derivatives exist for (0,0) but zooming in on (0,0,1) does not give a plane.

Differentiability

Defining **differentiable** for $f : \mathbb{R}^2 \to \mathbb{R}$ is a bit messy.

Can give a sufficient condition for differentiability:

Theorem:

If (x_0, y_0) is a point in the domain of a function f with

(A) f defined for all points in an open disk centered at (x_0, y_0) , and

(B) f_x and f_y each continuous for all points in that open disk

then f is differentiable for (x_0, y_0) .

Differentiability is often a condition needed as a hypothesis.

Theorem:

If f is differentiable in an open region containing the point P, then

$$\left(\frac{df}{ds}\right)_{P,\hat{u}}=\vec{\nabla}f(P)\cdot\hat{u}.$$